Role of the Hrp type III protein secretion system in growth of Pseudomonas syringae pv. syringae B728a on host plants in the field.
نویسندگان
چکیده
hrp genes are reportedly required for pathogenicity in Pseudomonas syringae pv. syringae (Pss) and other phytopathogenic bacterial species. A subset of these genes encodes a type III secretion system through which virulence factors are thought to be delivered to plant cells. In this study, we sought to better understand the role that hrp genes play in interactions of Pss with its host as they occur naturally under field conditions. Population sizes of hrp mutants with defects in genes that encode components of the Hrp secretion system (DeltahrcC::nptII and hrpJ:: OmegaSpc) and a protein secreted via the system (DeltahrpZ::nptII) were similar to B728a on germinating seeds. However, phyllosphere (i.e., leaf) population sizes of the hrcC and hrpJ secretion mutants, but not the hrpZ mutant, were significantly reduced relative to B728a. Thus, the Hrp type III secretion system, but not HrpZ, plays an important role in enabling Pss to flourish in the phyllosphere, but not the spermosphere. The hrcC and hrpJ mutants caused brown spot lesions on primary leaves at a low frequency when they were inoculated onto seeds at the time of planting. Pathogenic reactions also were found when the hrp secretion mutants were co-infiltrated into bean leaves with a non-lesion-forming gacS mutant of B728a. In both cases, the occurrence of disease was associated with elevated population sizes of the hrp secretion mutants. The role of the Hrp type III secretion system in pathogenicity appears to be largely mediated by its requirement for growth of Pss in the phyllosphere. Without growth, disease does not occur.
منابع مشابه
The Pseudomonas syringae Hrp pathogenicity island has a tripartite mosaic structure composed of a cluster of type III secretion genes bounded by exchangeable effector and conserved effector loci that contribute to parasitic fitness and pathogenicity in plants.
The plant pathogenic bacterium Pseudomonas syringae is divided into pathovars differing in host specificity, with P. syringae pv. syringae (Psy) and P. syringae pv. tomato (Pto) representing particularly divergent pathovars. P. syringae hrp/hrc genes encode a type III protein secretion system that appears to translocate Avr and Hop effector proteins into plant cells. DNA sequence analysis of th...
متن کاملPseudomonas syringae Hrp type III secretion system and effector proteins.
Pseudomonas syringae is a member of an important group of Gram-negative bacterial pathogens of plants and animals that depend on a type III secretion system to inject virulence effector proteins into host cells. In P. syringae, hrp/hrc genes encode the Hrp (type III secretion) system, and avirulence (avr) and Hrp-dependent outer protein (hop) genes encode effector proteins. The hrp/hrc genes of...
متن کاملClosing the circle on the discovery of genes encoding Hrp regulon members and type III secretion system effectors in the genomes of three model Pseudomonas syringae strains.
Pseudomonas syringae strains translocate large and distinct collections of effector proteins into plant cells via the type III secretion system (T3SS). Mutations in T3SS-encoding hrp genes are unable to elicit the hypersensitive response or pathogenesis in nonhost and host plants, respectively. Mutations in individual effectors lack strong phenotypes, which has impeded their discovery. P. syrin...
متن کاملبررسی اثر چند ژن بیماری زا در زندگی اپیفیتی (Pseudomonas syringae)
Pseudomonas syringae is a phytopathogenic bacterium with a wide host range. The biology of this bacterium consists of two phases. The first phase is the indication of disease on the host plant which generally appears in the form of necrosis on the aerial parts of plant (pathogenicity phase). The second phase is a rapid multiplication of bacteria on the aerial surface of the plant without inflic...
متن کاملبررسی اثر چند ژن بیماری زا در زندگی اپیفیتی (Pseudomonas syringae)
Pseudomonas syringae is a phytopathogenic bacterium with a wide host range. The biology of this bacterium consists of two phases. The first phase is the indication of disease on the host plant which generally appears in the form of necrosis on the aerial parts of plant (pathogenicity phase). The second phase is a rapid multiplication of bacteria on the aerial surface of the plant without inflic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 96 17 شماره
صفحات -
تاریخ انتشار 1999